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The composition of a degenerate gas whose density is of the order of nuclear density
or higher, is considered. The temperature is assumed so low that all types of fermions are’
degenerate. It is shown that, with increasing density, different hyperons should successive-
ly appear and increase in number. They should be stable because of the Pauli principle.
The threshold densities of different hyperons are calculated. Paradoxically, the smallest
threshold density does not correspond to the A-hyperon, having the smallest mass of rest,
but to the Z~ - hyperon.

In accordance with this, a sufficiently massive cosmic body in gravitatfonal equilib-
rium should consist of a hyperon core, a neutron layer, and an outer envelope having the
usual composition (electrons, protons, and composite nuclei).

1. INTRODUCTION

At the present time, the study of various schemes of stellar evolution is becoming increasingly important in
astrophysics, Numerous attempts are being made to interrelate the various observed stellar states by means of evo-
lutionary models. In some papers, evolutionary models are constructed for entire galaxies.

The main feature of most of the proposed models describing the origin and evolution of stars and galaxies is
that their authors assume an initial hypothetical state in which the matter forming ‘the star or galaxy is a tenuous
gas. It is assumed that stars originate through the condensation of this tenuous gas, the stellar matter remaining a
classical perfect gas throughout all of the initial phases of evolution.
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However, the analysis of extensive observational material in the case of young stars, as well as young galaxies,
leads to the conclusion that, in the course of fo:mation of stellar groups and galaxies, evolution proceeds from dense
protostellar bodies to states of lower density. In other words, very dense protostellar bodies give rise to more or less
numerous groups of stars, together with a large quantity of diffuse interstellar matter. Thus, there emerges the hy-
pothesis that the normal stellar and diffuse states of matter are preceded by a superdense state,

Three series of observational data can be used as evidence in favor of the superdense initial state of matter.

The first series deals with galaxies and groups of galaxies. These data have been analyzed in [1], It seems
to us that it is the universe of galaxies which provides the most direct indication that evolution proceeds in the di-
rection of decreasing densities. As has been mentioned in [1], there are data that provide evidence that galaxies
and spiral arms are formed from matter originally contained in the nuclei of galaxies, These nuclei have small
dimensions and a high density. Inasmuch as the stellar systems born in this manner cannot be formed from stars be-
longing to the normal type of stellar population found in the nuclei, we must assume that the nuclei may contain
appreciable quantities of protostellar matter.

Another series of data refers to the origin of stellar groups forming stellar associations. As has been pointed
out in [2], the presence of close groups of stars and Trapezium-type systems in associations and, in particular, in-
side the central regions of large gaseous nebulae found in O-associations, provides evidence against the view that
stellar associations are formed from diffuse nebulae. The properties of Trapezium-type systems indicate that they
arose from the division of a massive and very dense body.

The phenomenon of flares in UV Ceti stars, as well as in many of the T-association members, should be in-
terpreted as a process of energy liberation, the energy being brought to the surface from the inner regions of the star
in large but discrete amounts, It is reasonable to assume that this represents the eruption from the interior of quanti-
ties of protostellar matter still remaining in the central regions of the star. In this case, the energy of flares can be
interpreted as the energy of transition from the protostellar to the normal state of matter [3],

Of course, one cannot assume that the initial state is the same in all cases mentioned above. It is quite pos-
sible that protostellar bodies giving rise to entire galaxies are markedly different from those giving rise to stellar
associations, or simple systems of the Trapezium type. Moreover, it should be realized that the argument in favor
of the existence of very dense protostellar states of matter {s still not completely conclusive or final. However, it
is, nevertheless, sufficiently strong to encourage us to study the possibility of the existence of bodies with cosmic
dimensions in superdense states, in particular, in states with densities of the order of nuclear densities or higher,
and to determine the properties of matter under these conditions. ’

The conclusion on the possible existence of superdense states of neutron stars was reached some time ago by
Zwicky [4,5], who attempted to explain supernova explosions. The corresponding theoretical model was developed
by Oppenheimer and Volkoff [6]. At the same time, it should be noted that, much earlier, L. Landau [7] speculated

on the possibility of superdense cores in massive stars.,

It is to be expected that superdense states, in general, possess very complex properties, Therefore, it is desir-
able to consider first of all the states for which the absolute temperature is close to zero or, more accurately, states
with a temperature sufficiently low so that all types of fermions form a degenerate gas everywhere in the star. At
the same time, it is also desirable to study, in addition to stable and equilibrium states, the possibility of the exist-
ence of metastable states which correspond to higher values of stellar energy.

This will allow us to consider, at the first stage of the investigation, the processes leading to the liberation of
energy during the transition from a metastable state to a stable one,

The most important property of superdense states, as will be seen from the following, must be the presence of
hyperons in the star, in addition to neutrons. Since, at sufficiently low temperatures, the nucleon (neutron and pro-
ton) gas will be highly degenerate, hyperons with energies lower than a threshold value will become stable, because
the nucleons arising from their decay cannot find a place in phase space in accordance with the Pauli principle.
For the same reason, the interconversion of different types of hyperons is also impossible, The hyperons present
must also form a degenerate gas, In the following section, we will investigate the properties of a neutron-hyperon
gas, or, more briefly, of a baryon gas at T = 0.
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2. THE BARYON GAS

Let us consider the behavior of stellar matter when the density is of the order of nuclear density, or higher,
at a temperature T = 0, Under these physical conditions, the nucleon and electron gas will be completely degener-
ate. At densities above a certain value, the threshold Fermi energies for nucleons and electrons become so high
that it is more economical of energy if some of the matter changes from the nucleon state into the hyperon state.

Under the physical conditions of interest to us, it is strictly speaking, immaterial at equilibrium which of
the elementary particles under consideration are primary, and which are secondary, i.e., those that have arisen
from the primary ones. Nevertheless, for convenience, we consider in this section that nucleons are the: primary
particles from which, as the result of definite processes, hyperons can be formed.

At this stage, we are not interested in the precise specification of the process responsible for the formation
of the superdense state of matter. It is possible to assume that the given superdense state was formed from one of
still higher density. In this case, there must have been a conversion of heavy baryons into lighter ones. The re-
verse process of formation of superdense matter from a state of lower density can also be hypothesized (although
we consider this to be unlikely). In this case, some of the nucleons should have changed into hyperons. In the first
case, where the heavy baryons are converted into lighter ones, the process can take place in several ways (7 -meson
emission or leptonic transitions), while, in the second case, the conversion must take place almost exclusively by
means of leptonic transitions if the temperature remains low.

When speaking of leptonic transitions, we have in mind the following elementary processes [8,9]:
n—sp+e+v; pt+e—>n+tv,
A—sp+te+v, p+e —>Aty,
Poptety pre—I4y,

I“—snte +v, nte—->I +v, (2.1)
EoAdte+yv; Ade—E 4w
EXte +v; e —E 4y,

where the symbols », p, A, £, E, e, v and v denote the neutron, proton, A - , X -, E - hyperons, the

electron, neutrino, and antineutrino, respectively,

If the formation of the superdense matter from less dense matter could take place at extremely high tempera-
tures, of the order of 10! degrees with subsequent cooling, then 7 -mesons can also play a role in the formation of
hyperons.

However, we repeat that, in the present paper, we are not interested in the way in which the superdense states
are formed. Nevertheless, in order to determine the relative abundance of the various types of particles as a func-
tion of density, we will use the table of elementary processes given above to obtain relations between the chemical
potentials of the elementary particles, At T =0, these relations can be written as

prge = Phgpe = A = [n, )

ot = b, =k, —l, (2.2)

Pg== fg-= tn e,
where the symbol p has been used for the chemical potentials, or, in other words, the threshold energies of the cor-
responding particles. In (2.2) it has been assumed that the chemical potential of the neutrino is equal to zero. The
vanishing of the chemical potential of the neutrino is due to the absence of these particles from the volume of the
star*; in fact, these particles must escape from the star as soon as they are produced, without experiencing any in-
teractions (the cross section for the interaction of neutrinos with electrons is of the order of 10" cm? [10]). The
meaning of the above statement about the chemical potential of the neutrino becomes clear if we look at (2.4),
which is valid for any particle obeying Fermi statistics at T = 0.

The threshold momentum for fermions is given by

pr= (3n2)" RN, (2.3)

*If the mass of the neutrino is very small but different from zero, then some of these particles may be present within
the star. However, a small rest mass means that the number of particles present is negligibly small and need not be
taken into account,
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where the subscript k = e, n, A, etc., denotes the type of particle, h is Planck’s constant divided by 2m, and Ny
is the number of particles of the given type per unit volume. The chemical potential of the particles is equal to
their threshold Fermi energy:

Py == ¢ [M5 c? 4 (37t2)2/“ L2 NPT, (2.4)

Equations (2.2) and (2.4), together with the condition that the substance be electrically neutral, completely
determine the concentration of the various particles Ny as a function of the neutron concentration N;. However,
before we proceed to calculate these quantities, we would like to present another derivation of the equations ob-
tained in this section,

3., THE CONCENTRATION OF VARIOUS PARTICLES

IN A HIGHLY DEGENERATE BARYON GAS

s In the preceding section, the problem of the relative concentration of the various components of matter at
T = 0, and very high density, was solved by a consideration of the possible reactions between the elementary par-
ticles. However, it is obvious that the result should be independent of the exact form of the interactions and on
the probabilities for the various elementary transformations. '

Therefore, it is desirable to present a derivation of the equations determining the concentration of the vari-
ous types of baryons at T =.0, based on a number of general principles. The following three principles provide a
natural starting point for the discussion.

1. At equilibrium the energy of the system must be a minimum.

2. In all conceivable processes leading to the establishment of a state of statistical equilibrium between the
various components of matter, the number of baryons must be conserved.

As is known, there is also a law of conservation of leptons in elementary processes. However, under condi-
tions when the neutrinos and antineutrinos formed can comparatively freely escape from the star, the number of
leptons in a given volume cannot be considered as fully specified. In this case, the number of leptons becomes de-
terminate, and then, in a statistical sense, only as the result of the establishment of thermodynamical equilibrium,
the parameter determining the total number of leptons being the given total number of baryons.

3. The star as a whole, as well as its separate macroscopic regions, must be electrically neutral,

Using these basic assumptions, we can determine the concentration of the various possible components of
matter at very high densities and absolute zero. Under the physical conditions that interest us, the possible com-
ponents of matter can be electrons, ¢t~ - and 7~ -mesons, protons, neutrons, A - , X° - , Xt - %~ - E~-, E°
hyperons, as well as the excited nucleons p* and n*. By excited nucleons, we mean the isobars of the proton and
neutron with 7 =% and j =%, where 7 and Jj are the isotopic spin and angular momentum, respectively. Very re-
cently, the existence of another two isobaric states of the nucleon with higher excitation energies (approximately
750 and 1000 Mev) has been established experimentally. In the following, we will only consider the first isobars

because extremely high densities of matter are required for the excitation of the higher isobaric states.

The existence of excited states of the known hyperons is also possible. However, even if such states exist,
extremely high densities are necessary for their excitation.

-

Finally, the possibility that higher hyperons, i.e., hyperons with masses exceeding that of the =~ = hyperon,
will be discovered in the future, cannot be excluded. However, the appearance of these particles in a degenerate
gas at low temperature is also only possible at exceptionally high densities, Consequently, when we consider mat-
ter with a density lower than a certain limiting value, these particles need not be taken into account. As regards
the other elementary particles known at the present time, namely, positrons, photons, neutrinos, oot w0 )
and K-mesons, all of these particles must be absent at a temperature equal to zero, since there is no reason which
would prevent their decay or annihilation. The situation is completely different in the case of hyperons, excited
nucleons, f1”-, and 7 “-mesons, On account of the complete degeneracy of the electron and nucleon gas (T = 0),
and the action of the Pauli principle, these particles, at sufficiently high densities, become completely stable. This
occurs because the decay products of the particles considered cannot find an unoccupied position in phase space,
since the latter is completely filled up to a certain threshold value of the momentum, Each type of unstable par-
ticle has its own threshold density at which it becomes stable. All hyperons and nucleon isobars have half-integral
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spins and, therefore, the gases formed by them will also be highly degenerate, so that transitions between the vari-
ous hyperon states will be forbidden. The stability of the 7~ -mesons is ensured by the presence of a highly de-
generate gas of 1~ -mesons.

It should be noted that a priori it is impossible to state which types of real leptons will be present at T = 0
for a given concentration of baryons. For a given density, it is only possible to say that, if one of the types of lep-
tons is present, the antilepton conjugate to this type must be absent, Calculations show that electrons should be
present with baryons (positrons with antibaryons). Consequently, positrons should be absent, Asregards 4™ - and
7~ -mesons, their presence is unavoidable once the presence of an electron gas is assumed.

7 ~-Mesons occupy a special position under the physical conditions considered (high densities of matter, T=0).
Since m ~-mesons obey Bose-Einstein statistics, all of them will be in a state of lowest energy, i.e., they will be
motionless, Thus, they form a highly degenerate Bose gas, It will be shown below that, for densities above the
threshold for the creation of 7 “-mesons, the concentration of these particles is of the same order of magnitude as
that of each of the baryons, As a result of this, the temperature of a degenerate ™ -meson gas is found to be very
high. '

Thus, the energy contained in a unit volume of the medium is given by

Py

o= o2 ok | P (Mgt + pYdp - Noomac?, (5.1)
: k

0

where py is the threshold momentum for the kth particle. The subscript k runs through the values e, ®, p, p*, n, n*,
A, Z°, It I, =-, and E° for electrons, y ~-mesons, various forms of nucleons, and hyperons, respectively,
Ng is the concentration of 7 ~-mesons, and ay is a constant factor which takes into account the number of possible
spin states of the particles; ay = 25 + 1, where s is the spin quantum number. For excited nucleons, s = s/,. so that
ay = 4, while, for all of the other particles, s =4 and ak = 2. In the case of hyperons, the value s = } cannot be
considered to be firmly established. The first attempts to confirm this value of the spin experimentally have been
described at the Kiev Conference [91.

" For the threshold momentum of fermions, we have

/ 2 \Y; | 1
= (6’; ) AN, (3.2)

According to the first principle stated above, the concentrations of the various components of matter Nk
should be such that, for a given density, the energy (3.1) is a minimum,

To find the energy minimum, we must adjust the values of the variables Ny. Before we do this, however, it
is necessary to take into account the secord and third principles which introduce certain restrictions on the varia-
tion of the variables Nkg. Thus, the third principle, together with (3.2), reduces to the following equation:

Pp =+ 2Py 4 Phe — P — PR~ — pa-— P — 3n%h*Nz = 0, 3.3)
while the second principle can be written. as

1 :
—Z—Z‘Iakpz = const, (3.4)
: k '
where, with a spherically symmetrical distribution of mass, the constant depends only on 1, the distance from the
center of the star. In (3.4), the summation is carried out over all baryons,

* Thus, we have to determine the minimum of the function (3.1), together with the supplementary conditions
(3.3) and (3.4). As is known, the problem in this case reduces to the determination of the minimum of the function

Pr
© = g N ae | 72 (M3 p) dp - Nt
3 0 )
+ o (P8 + 2p3, + Ly — Py — pio— P8 — 5 — 3PN ) + (3.5)
. (more)
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(continued)
+ B, + 205 + P A PEo + P+ 203, + PR+ PR+ PR+ PR, (3.5)
where o and B are as yet undetermined parameters.

Equating to zero the derivatives of the function & with respect to the particle concentrations Nk (or, for con-
venience, in the case of fermions, it is possible to differentiate with respect to the threshold momenta pg), we find
the necessary conditions for the energy of the mass distribution to be a minimum. At this stage, however, we should
pay attention to a mathematical refinement which is important physically. The fact is that the derivatives of the
function & must be zero for the energy to be a minimum only when this minimum occurs for values of each of
these variables lying within the allowed range of variation, If the minimum value is attained when one of the
variables assumes a limiting value, then the derivative of & with respect to this variable need not necessarily be
zero, Thus, for example, it was shown above that 7 ~-mesons can only appear at very high densities. For baryon
concentrations below the threshold for 7~ -mesons creation, the function & must have been a minimum for Ng =0;
whereas this condition does not follow from the equations obtained by equating the derivatives of & to zero.

Therefore, we should be very careful and use each of the equations given below only when we are satisfied
that, for the given baryon density, the variable, with respect to which the function & has been differentiated, is
different from zero, Because of this, the whole range of variation of baryon concentrations will be subdivided in
the following into individual subintervals which differ from one another with respect to the relative concentrations
of the elementary particles, and which will be called by us the "phases™ of the gas,

We could, of course, obtain a separate function & for each phase, and then find its minimum value. However,
it appears to us to be better to consider, first of all, the highest phase in which all of the particles listed above are
present in the medium, i.e., to write down (3.5). Then if, in the equation describing the condition of equilibrium
between the various components, we omit the parameters of all the particles that are absent from the phase that is
of interest to us, we will automatically obtain all the necessary equations determining the concentrations of the
particles for this phase,

In all cases, with the exception of the variable N, the differentiations with respect to the Ny can be re-
placed by a differentiation with respect to the corresponding threshold momentum Py Equating the derivatives of
& to zero, we obtain the following equations:

oD 1,
gpr = o PR (Mt + p)' 4+ 3(x + ) P = 0, (3.6)
where k= p, p'andZ’,
o 1/, 3.7
T = i P (M3 4 p) + B8 — ) ph = 0. @
where k= X andZ",
o 1/,
Y -ﬁ—:ﬁs— P (Mic? + pi)"* 4 3Bpk = 0, (3.8)
where k = n, n*, A, Lnd E°,
oo ¢ 2 2.9 2\Y2 2 __
= Pi (mic® + pic) 3ape =0 3.9)
where & == cand s, and, finally,
oD
—— = mpc? — 3n2h%a = 0.
oN, ~ " (3.10)

These equations, together with (3.3) and (3.4), completely determine the values of the threshold momenta
Pk and the parameters o and 8. Eliminating & and 8 from (3.6)-(3.10), we obtain

(M2 + phy' = (Me® + ph)* (3.12)

where k =n*, A, £°, and E°,
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(M,Z‘cz + Pﬁ )'/z — (Mﬁcz-l-»p?. )‘/s_ (m”cz—}-pﬁ )‘/: (3.12)
where k =p, p*, and =¥,
(Mie? + ) = (M3e? + p2)"* + (m*c® + pt)"” (3.13)
when k = £~ and E~ and, finally,
(m2e® -+ p2)¥s = (mPc® + p2)'s = mxc. (3.14)
Equations (3.11)-(3.14), together with (3.3) and (3.4), completely determine the particle concentrations Ny for the
most general case, when the density of the gas consisting of leptons and baryons is so high that all of the possible

elementary particles are present. It can be seen that, under conditions of thermodynamic equilibrium, the baryons
in the same charge state possess equal threshold energies, This theorem also holds in the case of leptons.

Our problem is now to find the variation of the concentrations Ny as the total number of baryons N increases
from zero to very high values, There will be a number of phase changes as N increases.

The First Phase

The baryon density is so low, that the sum of the proton and electron threshold energies is smaller than the
rest mass of the neutron (and, hence, of all the other baryons). Only protons and electrons are present. In this case,
we have the simple equation

N, = N..

This will be called the proton-electron phase,

The Second Phase

The sum of the electron and proton threshold energies is greater than the neutron rest energy, while the elec-
tron threshold energy is lower than the u-meson rest energy (neutron phase),

We then have

(M c® 4 p3) + (m2e? + p)s = (MB c® + pR)" (3.15)
Ne=N,. '

This equation is obtained from (3.11)-(3.14) if the parameters of all the particles except the electron, proton, and
neutron are omitted. Solving (3.15), we obtain

Ne=Np=NoL3{[1 -+ ak /54 L2(Nn [ Noyh]’- — 1}, (3.16)

where o ~ 2,54 is the difference between the masses of the neutron and proton in units of electron mass, X =
= 21rm/MP =3,39 * 1073, and Ny = 8(mc/h) = 1.4 * 102 cm™3,

The transition from the proton-electron to the neutron phase takes place at a baryon density of N = 0,77 -10%
cm™®, The ratio of the number of protons to the number of neutrons decreases rapidly, and quickly becomes of the
order of 103,

The Third Phase

The electron threshold energy is higher than the rest energy of the y “-meson, while the sum of the neutron
and electron threshold energies is lower than the rest energy of the £~ (nucleon—p”-meson) phase. From (3.11) to
(3.14), we obtain, in this case,

(M5e® + pp)"* = (Mrc® + ph)" — pe
(mie® + PRY = Pes (3.17)
P} + = Py
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In this, as in the preceding phase, the electrons are highly relativistic. The number of 1 -mesons is here
very small by comparison with the number of electrons, so that, for the calculation of the proton and electron con-
centrations, we can still use (3,16). The concentration of u™-mesons is given by

Nu. =N, [1 _‘(Au./Ne)g/' ]’/z, (3.18)

where A, = (% n‘)(mﬂc/ h) = 5.24 * 10% cm™3 is the threshold for the creation of y~-mesons. To this electron
density there corresponds a neutron density approximately equal to 5 * 10% ¢m™3, which is about two and a half
times as great as the density of particles in normal nuclear matter.

The Fourth Phase

This phase appears when the density of matter is such that the sum of the neutron and electron threshold
energies becomes equal to the rest energy of the = -hyperon. The first £™-hyperons begin to appear at this density.
As the density of matter increases further, the A, n*, £°, B, p*, Z*and=° particles begin to appear in this order.
This phase, which can be conveniently called the hyperon phase, consists of a number of subphases, each correspond-
ing to the appearance of amew particle. However, we will not consider the properties of the individual subphases
separately, From the general equations (3,11)-(3.14), omitting the 7 - meson rest energy (since this particle is still
absent), we obtain

EA=En*=Ego=EE°=En (a)
Esi= Ep = Ey = En— E, (b)

Es-=Ez-=E,+ E, (©) (3.19)
Ee = Eu. (d)
Py 420+ — i — P — i —p2=0, (e)
where Ej is the threshold energy (chemical potential) of the particles,

From (3.19a) we obtain
Ny = o aeN (1 — (Ag/NoYh 1P,
- (3.20)

. ) * =0
where the Ay are constants, k=A, L% n’and 2,

M, 8 53
= () (0 — w2y (3.2

= 32 h

From (3.20) it can be seen that neutral hyperons can exist in the medium only at densities exceeding the
neutron density N > A. Thus, the quantities A} play the role of threshold densities for the corresponding particles,
The numerical values of the threshold densities for the neutral hyperons are as follows:

9.6-10% cm™ for A
~9.6-10% cm™ for n*
1.72.10%° cm™ for X°
3.55-10% cm™ for =°.

Ay = (3.21")

By way of example, we note that, at a neutron density Ny = 4 « 10* cm™, the densities of the A-, T -, and
E°~ hyperons are 1,92 + 10, 1.12  10%, and 8.2 - 10" cm™>, respectively, while the number of particles in the
neutron-isobar state is 3,85 * 10* cm™, When the density of matter is 10% cm™3, the concentration of all neutral
particles will be of the same order of magnitude,

With the help of (3.19b), the densities of all positive particles can be expressed in terms of the proton density:

Ne= 4y (U — (BN, T k= prand 3, (2.22
where By is given by
B 1 (MkC )3 " M§>32
=\ =) =) (0.2
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As in the case of the neutral hyperons, the quantities By represent the threshold densities for positive h)\'per-
ons. They can be present in the medium only for proton densities Np > Bg. The numerical values of these con-
stants are

B - 1.73-10% cm™ for X° (3.24)
B ~0.98-10% cm™ for I

In an analogous way, from (3,19¢c), we find that
Ng- = Nx- [1 — (Bz-/Ng- Y517, (3.25)
where

M__c \3 .
Bz = L( =’ ) (1 — M3 [M%-)" = 7.87-10% cnf?,

3n2

Thus, for the complete solution of the problem of determining the particle concentrations at a given density
of matter, we have only to express the electron, proton, and £ -hyperon densities in terms of the neutron density.
Instead of the total dehsity of matter, we prescribe the neutron density, and this is equivalent to the specification
of the constant in (3.4). We are left with three unused equations: (3.3), one of the equations (3.19b), and one of
the equations (3.19¢) and (3.19d) for the three unknowns Ne. Np, and Ny-. These equations can be rewritten as

‘ . b2, \?¥ 2\ . BZ_ \%
alrez (=) (-5 ) [ (2] ]
Pp Pp / 158
\3/2] (3.26)

3[1-1 (1 i
be , A )

cpp = (B — Eo) — M3c")™ eps- = [(En + Eo) — My-c?]%,

e N

where

'—~3.23.-107 for p°
by = (3n2)hB = 3.9 107 for XV (3.27)
3.0 -10714 for 7.
The constants by, are related to the masses of the corresponding particles by the simple relatlon bk = c(Mk
i#)? , where the subscript i stands for p in the case of positive particles, and for £~ in the case of the Z~ -
hyperon. Equations (3.22), (3.18), and (3.25) have been taken into account in the derivation of the first of (3.26),

Equations (3.26) have been solved graphically., The results are given in Figs. 1 and 2, Figure 1 gives the
electron density as a function of the neutron density, For Np < 5 ° 10% c¢cm™, there are no i ~-mesons or hyperons
in the medium, and in this region N, = N,. For Ny < 10% cm™®, the electron (or proton) concentration increases
slowly with Nj, and is three to four orders of magnitude smaller than the neutron concentration, With a further in-
crease of N, (when N, > 10% ¢cm™), log N increases more rapidly. Most of the electrons are highly relativistic.
At N, >5- 10® cm™, 7 -mesons begin to appear, although they are few in number, and Ne ~ Np. Z™-hyperons
appear at a certain threshold value of Ny, This corresponds to a threshold momentum-py, given by

{[(Mg-c® — Bn)? — mpe") 4 (Mzp-c® — E,)%}2 = [(2E, — Mg- c®)*— M3c4). (3.28)

The solution of this equation gives py = 517 Mev/c, from which we obtain Nj, = 6.13 * 10%® ¢m™®

It is remarkable that, at this density, there are still no A-hyperons which, as was shown above, appear at a
threshold baryon density of 1,25 * 10* cm™, This occurs despite the fact that the rest energy of the £ -particles
is considerably greater than that of the A, The reason for this is that the ™ -particles have to neutralize the posi-
tive charge of the protons whose concentration increases with increasing Np, while,starting from a certain point,
the ™ -particles on energy grounds are more “economical® than one new proton and two new electrons. As the
density increases further, £’-hyperons, =~ ~ hyperons, then =¥ -hyperons and E°- hyperons appear successively
after the A -hyperons, It is interesting to note that the negative hyperon Z~ again appears before the lighter
Zt-hyperon. All of these threshold densities are found to lie below the threshold for the appearance of 7~ -mesons.
The values of the threshold baryon concentrations and the total density of matter at which different hyperons ap-

pear are given in the table below.
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Fig. 1. The electron density N as a func-
tion of the neutron density N. Scales are
logarithmic. Ordinates of the curve for

Np < 6 * 10® cm™ also give proton density.
After this critical point, the proton curve
suffers a change in slope and becomes very
steep,while the electron curve at first dips
appreciably and then begins to rise. This de-
crease of N is governed by the appearance
and subsequent rapid increase in the con-
centration of £ -hyperons. For Nj = 8.5 *

- 10% cm's. the electron concentration re-
mains constant,which is due to the presence
of a 7~ -meson gas.
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Fig. 2. The proton, E'-hyperon, T -meson,
and electron densities as a function of the
neutron density. The ordinates of the curve
for electrons have been multiplied by 10°,
There is a small discontinuity in all of the
curves at N = 8.5 * 10% cm™3, because of
the creation of 7~ -mesons.

The Values of Some Parameters Characterizing the Thresholds for the Creation of

Different Particles

Particlte n B = m | 2o pr | BF | B | T
t 0 1.92 | 2.0 | 2.40 | 2.41 |2.856] 2.97 | 3.07| 3.42 | 3.49 | 4.36
Baryon 7.68-10° | 0,465/ 0.640| 1.27 | 1.27 |3.95[5.10| 6.44/13.5(15.4| 58.6-
dénsity
N-10-%
cm -3
Density 1.28-10"% }0.813| 1.12 | 2.36 | 2.36 |7.82{10.3 [13.2 |28.8(33.0 144
of matter,
p-107%.em™

Remark. t is given by (4.4),

Figure 2 shows the electron, proton, and I -hyperon densities as a function of the neutron density. These
curves, together with (3.22) and (3.25), give the density of all charged baryons for a given valpe of the neutron
density.

The Fifth Phase

Here, the threshold energy of the electrons and ™ -mesons becomes equal to the rest energy of the 1~ -meson.
m~-Mesons appear from this stage onwards, In this case, all of the equations of the system (3,11)-(3.14) are valid.
With the appearance of 7~ -mesons, the concentrations of electrons and ji” -mesons remain constant, while the
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7~ -meson concentration increases very rapidly with increasing baryon density, and quickly becomes of the same
order of magnitude as the concentration of each type of baryon, separately, The threshold for production of 7~ -
mesons can be easily found from a comparison of the equations mentioned above, or of (3.14) and Fig. 2 It is
found to be Ng = 1.20 ¢ 10’ cm™, or, in terms of the neutron and baryon densities, Np=8.5+10"® cm™ and N =
=58 * 10% cm™, respectively, -

From (3.14), we find the concentrations of electrons and g™ -mesons to be

3
N=—,‘t—(—"§;'-°—) —1.20-107 cm™

(m2 . mz)t/’/ha 3 33 1038 cm (3-29)

for N,n.>8.5-10% c¢m™

Further, (3.20), (3.22), and (3,25),describing the relation between the concentrations of baryons of equal
charge, remain in force for this phase.  We can now also find analytically the relation between the concentrations
of charged and neutral hyperons. Thus, from (3.12) and (3.14), we find that

N

= 371:2

Ny = -0, (((CI + NipY" — clop — Cy,
Cr = ¥z %/3n2,

where % = h/M¢ is the Compton wavelength for the kth particle, divlded by 2w, while the index k stands for p,
p*,and =¥,

(3.30)

Similarly, from (3.13) and (3.14) for the concentrations of negative hyperons, we find that
N ={I(C3 + N2+ Cle — ciby™. ©@a
The notation is the same as that used in (3.30), The constants Cy have the following values:

1.20-10%" for  =- particle
3.66-10% for p .
3.67.10% for n "
Cr=06.14-10%for p* = (3.32)
7.43-10% for L* ®
7.57.10% for L~ "
10.2-10% for =~ °

Hence, the concentration of all particles, with the exception of #”-mesons, have been expressed as functions
of Nj. The concentration of 7™ -mesons can be calculated from the equation

Ny=N*—N-—N,— N, | (3.3"

where N* and N™ are the total concentration of the positive and negative baryons, respectively, The results are
given in Fig. 2. Small changes in the slopes of the curves for electrons, protons, and X~ -hyperons at Ny, = 8.5 °
+ 10% cm™® are the result of the appearance of 7~-mesons.

The relative concentration of hyperons as a function of the concentration of baryons is shown in Fig, 3.

In the extremely relativistic case, i.e., at very high densities of matter which may not occur in nature, we
have the following asymptoti¢ relations:

Ny~ Np~ 0.5 Nps =~ NE_ ~Ny-=Npy =05 Npi= Ngo~ Ngox= Ny,
/ Ne~Nt— N"=2N,.

Thus, on the basis of the results obtained in this section, we come to the conclusion that, at densities of mat-
ter N ® 10% baryons cm™, the medium, in addition to nucleons, also contains hyperons and excited nucleons, The
concentrations of all baryons are of the same order of magnitude, while those of electrons and p ™ -mesons are three
orders of magnitude lower, For baryon densities, N > 6 * 10* cm™®, 7~ -mesons also appear in comparatively large
numbers, '

(3.33)
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For the approach to the problem considered in this

Ny/N ’ section, it is not necessary to have T = 0, It is clear that
w the results obtained above will remain valid for tempera-
aé —— tures different from zero, so long as the temperature is

6l s such that the baryon gas can be assumed to be highly de-
2% pd generate. On the other hand, since the density of matter
22 is very high, the temperatures allowed in this case can,
p L~ nevertheless, be very high.

6 W72 4 687 2 4 GopfN

The critical density at which hyperons appear in the

Fig. 3. The baryon density is plotted medium is approximately three times as high as the normal
along the abscissa, while the ordinate is nuclear density. The question now arises whether any forces
the ratio of the density of hyperons to and, in particular, the forces arising between baryons at
that of all baryons. very small distances (incompressibility), can prevent the

formation of states with such high densities. To answer
this question, let us consider the differences between the physical conditions existing in normal atomic nuclei and
in the nuclear matter investigated by us. In contrast to normal nuclei, the nuclear matter in stars is neutral and,
moreover, it is situated in a strong hydrostatic pressure created by gravitational forces. Obviously, both of these
features create conditions favorable for a further increase of the density. The matter under these physical condi-
tions would be compressible without limit, if there were no repulsive forces acting between nucleons, at distances
of the order of 0.4 - 10 ¥ cm. These forces are so strong, that they are usually approximated by a Dirac § -func-
tion, i.e., the nucleon is assumed to have an impenetrable core with a radius of the order of 2 * 10~ Yem [12]. It
is highly probable that these repulsive forces will, in the end, balance the external hydrostatic pressure,and the
compression of matter to a density greater than a limiting walue will be prevented. This limiting density will ap-
parently be greater than N ~ (0.4 *+ 107%)™ = 1,6 + 109 cm™, i.e., above our threshold for the appearance of hy-
perons , but lower than the threshold for the appearance of T~ -mesons. Thus, it appears that physical conditions
favorable to the appearance of hyperons as stable particles can be realized in nature, On the other hand, the
problem of the appearance of 7~ -mesons at high densities may require review, since the presence of repulsive forces
may invalidate a theory in which such interactions are not taken into account,

The region of a star which, in addition to nucleons, also contains hyperons, we will call the “hyperon core,”
It must be surrounded by a spherical layer mainly consisting of neutrons. There are no hyperons in this layer, pro-
tons and electrons are present in equal numbers, while their concentration is approximately three orders of magni-
tude lower than that of neutrons. We will call this region of the star the "neutron layer.” Outside this layer, there
is a region in which matter consists of electrons, protons, and other nuclei. In the deeper layers of this region, the
atoms are completely ionized. In the following, we will call this region of the star the “outer envelope,”

4, THE EQUATION OF STATE

Up to now, we have considered the equilibrium composition of matter with a given density. However, the
question of what values of density are attained in any given cosmic body which is in equilibrium under the action
of its own gravitational forces can only be answered after we have constructed a model for the equilibrium con-
figuration of this body, when the attraction is balanced by pressure, To do this, we have to use Einstein's theory
of gravitation, in view of the very high density.

Einstein’s equations contain the energy-momentum tensor whose components are determined by the proper
density of matter and the proper pressure, i.e., the density and pressure measured by anobserver situated at the
given point, A solution of Einstein's equation becomes possible only when the pressure is given as a function of
the density, i.e., when the equation of state is known. In the present paper, we will restrict ourselves to the deri-
vation of the equation of state for a degenerate baryon gas with the high densities considered above,

Let us consider a small volume V inside which the gravitational field and, consequently, the concentrations
of the particles, can be assumed constant. The energy contained in this volume is given by

k

Pr .
E = {Z[S Ey (p)dNy (p) + NuU (N) ] + Nnmnc2}, (4.1)

0
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where E = c(My%c? + pk’)% is the energy of the kth particle, dNi(p) is the number of these particles with momenta
lying in the interval (p, p + dp), U(N) is the nuclear potential energy per particle which is assumed to be the same
for all baryons, and N = ZgNy is the total baryon density. The energy of the electron gas is low, and will be ne-
glected. The reason for writing the energy in the form of (4.1) is that the energy-momentum tensor Ty}, appearing

in Einstein’s equation must be taken as the sum of the energy-momentum tensors of matter and the nuclear field.

In the region of normal nuclear densities 10 SN %10% em™, the energy U(N) is sufficiently small by com~
parison with Ep, and may be neglected. In fact, the average kinetic energy of the nucleons in nuclei is approxi-
mately equal to 27 Mev, while the binding energy, corrected for the absence of repulsive Coulomb forces and sur-
face effects, is equal to 15 Mev, Consequently, the depth of the potential well is equal to 42 Mev. It is obvious
that U(N) is not a constant, but depends on the density of particles N, In the region of densities 10°"S N < 10%
cm”3, this function can be obtained from a comparison of Figs. 10 and 11 of [11]. The algebraic sum of the ordin-
ates of these curves is equivalent to our single-particle potential energy U(N). Thus, as N increases, U(N) at first
decreases, reaching a minimum of 40 Mev at N » 4 * 10°® cm™, and then, for N > 4.5 * 10®® cm™, i.e., at densi-
ties only slightly lower than the threshold value for the production of £~ -hyperons, it begins to increase rapidly.
The minimum of U(N) occurs when the average distance between particles is of the order of the 7 -meson Compton
wavelength h/ mgc. In the paper referred to, it has been assumed that, at a certain distance between particles
(0.4 fermis), the potential energy increases discontinuously to infinity, which corresponds to the assumption of an
impenetrable nucleon core.

In reality, of course, the nucleon core is not ideally rigid, and the infinitely large repulsive force acting at
a fixed separation between particles must be replaced by a more realistic model of the interaction. This is neces-
sary, since the expression for the pressure contains the derivative dU/dN, which is equivalent to a specification of
the repulsive force. In other words, for N > 10® c¢m™, the behavior of the function U(N) will be very important,
and the use of a &-function as an approximation to it is completely inadequate.

Because, in the following, we will also have to consider problems associated with very high densities, we
found it desirable to retain in (4.1) the term containing U(N). It should be noted, however, that the representation
of the potential energy of one particle by U(N) is itself a rough approximation, because the actual interaction
energy can also depend on the distribution of the particle momenta, as well as on other parameters.

After integration, (4.1) yields the following expression for the energy density:

P = Towr ) U [ pe(MEc® + 2p%) (Mie® + pi)"—
k

n VW (4.2)
: ¢4 pd
— Mictn BTk 1’*] 1+ NU(N) 4 Ny mac?.
i
Further, the derivative of (4.1) with respect to the volume gives the pressure with opposite sign:
¢ 2 2 2 !
P =t [P,; (2p; — 3M3.c®) (M3 c® + p2)/: 4
¥ (4.3)

2 2 2
4 g1 Pe T Vaie+ g . nr2dU (N)
<+ 3Mjyc*1ln M, s + N N

The partial pressure of electrons and [ -mesons has been neglected, At N = 4 * 10°*® cm™®, the derivative dU/dN
& 0, but with increasing values of N, it rapidly increases, For N < 4 » 10% cm‘s, nuclear forces, to some extent,
lower the internal gas pressure (dU/dN < 0); while, for. N > 4 + 10®® cm™, they increase the pressure (dU/dN > 0).
Thus, with sufficiently high values of dU/dN, the internal pressure may become large enough to balance the gra-
vitational forces, and this will affect the compressibility of the star, In all probability, this will occur at particle
concentrations of the order of 2 *10¥ cm™3,

Equations (4.2) and (4.3), together, determine the equation of state. For further applications, it is convenient
to replace the threshold momenta py by the parameters [6, 13, 14]

(Pt VM

by =41 Mo (4.4)
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Eliminating pj, from (4.2) and (4.3), we obtain the equation of state in parametric form :

K 2 ay (M ) (shty — tk) + NU(N) -+ Npmac? (4.5)
K b o,
LK S o (5) (shte— 850 %+ 30,) 4 222, (4.6)
3 n

where
K, = M nc®/32m2h3,

The particle density N can also be expressed in terms of t;, :

16 K, My 4\ '
N—_—.‘g-m—?;ak (M;:ShT) . (4.7)

With the help of (3.20), (3.22), and (3.25), as well as Fig. 2, it is possible to express all of the parameters tj
in terms of the corresponding parameter for neutrons ty.

CONCLUSIONS

The investigation of the properties of a neutral degenerate gas consisting of elementary particles at T = 0,
leads to the following conclusions.

1. At adensity p < py, where p, =1.28 * 107 g cm™?, the gas consists of protons and electrons.

2. Atp =pp, neutrons appear. As the density increases further, the number of protons increases much more
slowly than the number of neutrons. At densities higher than 2 * 10%, the number of neutrons is already very much
larger than the numbers of protons and electrons., At these densities, the degenerate gas can be considered to be
practically a neutron gas,

3. Atp =py =1.1°10% g - cm™, the first hyperons appear. In spite of the fact that the A-, £*-,and X
particles have rest masses smaller than that of the Z”, the first to appea.r are L -particles, As the denslty con-
tinues to increase up to a value p = p 5, where py = 2,36 - . 10% gecm®, 3, the number of £~ -hyperons continues to
grow, although hyperons of other types as yet do not appear.

4. Atp =pA, A-hyperons appear, and with a further increase of the density, other heavier hyperons make
an appearance. Thus, at densities of the order of 101 g *cm ®, we have a baryon gas which is a mixture of nu-
cleons, hyperons, and nucleon isobars, the concentrations of the different types of baryons being of the same order
or magnitude, '

At baryon densities exceeding 2 * 102 cm™ (5 + 10% g < cm ™), the investigation of the state of such a gas
encounters the following difficulties,

a. Because of the small distances between baryons, very strong repulsive forces arise,whose properties are
not established exactly at the present time.,

b. The relative concentrations of the various types of baryons can be strongly affected by the presence of
higher hyperons (having masses greater than that of the & = particle). Therefore, any conclusions obtained for
this range of densities would be premature. It is only possible to say that the relative concentration of the higher
hyperons will increase with increasing density, while, at a certain value of the density, the existence of 7~ -mesons
as a Bose gas becomes possible.

All that has been said above leads us to conclude that the model of superdense stars as purely neutron, or al-
most purely neutron bodies, should be replaced by a more complicated model, according to which a superdense
star has a hyperon core, a neutron layer around the core, and a proton-electron envelope, As will be shown in a
subsequent paper, the largest fraction of the mass (for a sufficiently large M) is concentrated in the hyperon core,

Finally, let us note that, at densities considerably smaller than nuclear densities, nuclei of the common
atoms may exist in the medium. Thus, if the fusion of nucleons into a-particles is taken into account, it will be
found that there are no protons at equilibrium,. However, at the high densities considered by us, the individual
atomnic nuclei will no longer have an important role,
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